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Abstract In the present work we extend the theoreti-
cal and numerical discussion of the well-known Laplace-
Beltrami operator by equipping the underlying mani-
folds with additional structure provided by vector bun-
dles. Focusing on the particular class of flat complex
line bundles, we examine a whole family of Laplacians
including the Laplace-Beltrami operator as a special
case.

To demonstrate that our proposed approach is nu-
merically feasible, we describe a robust and efficient
finite-element discretization, supplementing the theo-
retical discussion with first numerical spectral decom-
positions of those Laplacians.

Our method is based on the concept of introducing
complex phase discontinuities into the finite element ba-
sis functions across a set of homology generators of the
given manifold. More precisely, given an m-dimensional
manifold M and a set of n generators that span the rel-
ative homology group H,,—1(M, M), we have the free-
dom to choose n phase shifts, one for each generator,
resulting in a n-dimensional family of Laplacians with
associated spectra and eigenfunctions. The spectra and
absolute magnitudes of the eigenfunctions are not in-
fluenced by the exact location of the paths, depending
only on their corresponding homology classes.

Employing our discretization technique we provide
and discuss several interesting computational examples
highlighting special properties of the resulting spectral
decompositions. We examine the spectrum, the eigen-
functions and their zero sets which depend continuously
on the choice of phase shifts.
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1 Introduction

The Laplace-Beltrami operator was first introduced and
considered in purely theoretical settings in order to
adapt the well-known Euclidean Laplacian to the realm
of smooth manifolds. Typically it is defined to act on
real-valued scalar functions f by Af = d*df where d is
the differential and d* its adjoint.

Since manifolds provide a general setting for de-
scribing geometrical shapes, the feasibility of computa-
ble discretizations of the Laplace-Beltrami operator, see
e.g. [5,7,42,37,24,1], has led to numerous applications
in geometry processing algorithms, exploiting the close
connection between the geometry of M and properties
of the spectral decomposition of this operator. Comput-
ing the spectral decomposition of A amounts to solv-
ing the equation Af = Af which results in an infinite
sequence of real non-negative eigenvalues Ai, \g, ...,
called spectrum of A and a sequence of eigenfunctions
f1, f2,... corresponding to the eigenvalues. Important
features are its invariance under isometric deformations
being a consequence of its purely intrinsic definition
and its ability to capture geometric similarity in a com-
pressed manner.

Among the known applications are shape and image
retrieval using a prefix of the spectrum as a fingerprint
or “Shape-DNA” [26,27,21,22]. For the apparently ear-
liest reference to the latter application see [38], with
details in [39]. A corresponding patent application was
presented in [40]. Further applications are geometric
signal processing operations [33,16, 35], surface remesh-
ing [6], creating descriptors for shape matching [30,32,
2,29,13,18], shape segmentation and registration [23,
14], statistical shape analysis for medical studies [28,
19,25] and symmetry detection[20], just to mention a
few. A survey of some applications can be found in [43].
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Along with the familiar concept of manifolds, the
concept of vector bundles is a very natural construc-
tion in differential geometry and algebraic topology.
Common geometrically motivated examples include the
tangent and cotangent bundle. Bundles also provide a
natural setting for studying differential operators and
partial differential equations. However, while there is a
great variety of other bundles that can be constructed,
few concrete computational examples have been given
so far.

Most of the above-mentioned works focus on the
Laplace-Beltrami operator which can be interpreted as
a Laplacian on the trivial vector bundle M x R. Re-
cently [34] considered an approach for obtaining spec-
tral decompositions for a class of Laplacian operators
on non-trivial real line bundles over two-dimensional
surfaces, introducing a global topological “twist” into
the bundle M x R.

The contribution of the present work is to extend
the above discussion by considering complex line bun-
dles which offer significantly more flexibility for shapes
with non-trivial topology. While the simplest complex
line bundle M x C does not give any new information
compared to M x R, it can be modified in order to in-
troduce a global twist analogously to the real-valued
case.

The twisting in the real-valued case is determined
by a choice of signs, yielding a finite number of dis-
tinct bundles with associated Laplacians. However, our
newly proposed complex-valued approach allows for a
continuum of phase parameters and accordingly many
bundle Laplacians. The real-valued case is completely
covered by choosing the phase parameters as integer
multiples of 7. However, there is a rich variety of Lapla-
cians corresponding to other parameter choices, leading
to spectral properties which cannot be obtained from
a real-valued approach. All considered Laplacians only
depend on intrinsic quantities and are therefore invari-
ant under isometric deformations.

Introducing the concept of a connection and its as-
sociated curvature, it is possible to speak of flat bundles
and it turns out that even the special case of flat com-
plex line bundles considered here already offers a rich
structure. Our current contribution can also be seen as
a first step towards a numerical approach for consider-
ing Laplacians also on non-flat complex line bundles.

To substantiate the theoretical discussion with con-
crete computational examples, we focus first on the two-
dimensional case and propose a discretization method.
We also include first three-dimensional examples indi-
cating our approach to be generalizable to higher di-
mensions.

(a) (b)

(©)

Fig. 1 (a) Graph of a smooth real-valued function (red) over
the circle (black) interpreted as a section of the trivial bundle.
(b) Introduction of a sign-flip discontinuity. (¢) By going to
the twisted bundle, the graph becomes continuous again.

2 Geometric Background

Roughly spoken, our approach is based on forcing any
function on the surface to have a complex phase shift
across a specific set of paths lying on the surface. This is
accomplished by modifying the standard finite element
basis functions accordingly.

At first one might think that an artificial introduc-
tion of discontinuities would produce results that de-
pend on the precise choice of paths, or in the worst
case, to produce no results at all as the finite element
method for the Laplacian eigenvalue problem is typi-
cally formulated in terms of continuous basis functions.
However, it turns out that the results are invariant with
respect to the choice of paths up to homology and that
the theory of vector bundles provides the appropriate
context for interpretation.

To give an intuitive picture of the main idea, con-
sider a smooth function f: S' — R over the circle S'.
We can draw its graph as a smooth curve on a cylinder
as shown in fig. 1. Introducing a sign flip at a certain
place ¢ € S makes the graph discontinuous. However
this discontinuity disappears if we cut up the cylinder
at the vertical line centered at ¢ and glue it back to-
gether after a twist. The result obtained is the Mobius
band. On this object, the graph of the function f has
become a smooth curve again and it seems reasonable
to be able to differentiate it. The Laplace Beltrami op-
erator on the circle is given locally by A = —% with
t € [0,27] being the arc-length parameter. Assuming
that the cutting point ¢ corresponds to ¢ = 0 (mod 27),
computing the spectral decomposition amounts to solv-
ing the boundary value problem —f”(t) = Af(t) with
antiperiodic boundary conditions. Note that this proce-
dure does not depend essentially on where ¢ is located.
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Following this line of thought leads to the notion of
vector bundles, an important concept in topology and
differential geometry. Using this theoretical framework,
the discontinuities explicitly present in the functions
disappear when the functions are replaced by sections
of an appropriately twisted vector bundle. In the fol-
lowing section we will briefly review this framework.
We will also need some basics of algebraic topology in
order to classify and construct different vector bundles,
as briefly collected in Appendix A. A comprehensive
treatment can be found in textbooks on differential ge-
ometry and topology such as [17,11].

2.1 Vector Bundles

Intuitively, a real (or complex) rank k vector bundle
FE over a manifold M is obtained by assigning to each
point p € M a real (or complex) k-dimensional vector
space E, in a continuous way. The vector space E,, is
called fiber over p. Vector bundles of rank one are called
line bundles. For a formal definition of vector bundles,
see e.g. [9].

The cylinder and the M&bius band in fig. 1 are ex-
amples for real line bundles over the circle M = S*.
In the first case, a copy of R is assigned to each point,
resulting in a bundle £ = M x R. The second case,
while locally similar, is topologically different because
of the global twist. A bundle having the structure of a
global Cartesian product M x V for some vector space
V' is called trivial. However, not all vector bundles are
trivial, as the Mobius band shows. Instead, they sat-
isfy only a local Cartesian product condition: For each
point there is a neighborhood U such that the bundle
over U is homeomorphic to U x R¥ (or U x C*). This is
called a trivialization of the bundle over U. If V is an-
other neighborhood, then one has a transition function
hy — hy, that relates both trivializations via a linear
isomorphism on the respective fibers, see fig. 2.

An important real rank m vector bundle associated
to an m-dimensional manifold is its tangent bundle T'M
which is the collection of all tangent spaces. The cotan-
gent bundle 7% M is the dual bundle of T'M, consisting
of the collection of all vector spaces being dual to the
tangent spaces. For two-dimensional manifolds these
bundles can be viewed either as real bundles of rank
two or as complex line bundles.

A map s : M — E with the property that s(p) € E,
is called a section of E. The space of all smooth sections
is denoted by I'(E). For example, a section of the trivial
line bundle M x C is just a function f : M — C. A
section of the tangent bundle T'M is a vector field. A
section of the cotangent bundle T*M is a differential
one-form.

Often, vector bundles are equipped with additional
structure, such as a metric or a connection: An Eu-
clidean vector bundle is a real vector bundle which is
equipped with a smoothly varying symmetric positive
definite bilinear form (-,-) : E, x E, — R on its fibers,
called fiber metric. The space of sections I'(E) of an
Euclidean vector bundle (F,(,-)) becomes a Hilbert
space by introducing the scalar product

(6,9) == /M<¢,w> aM .

These constructions carry over to complex vector
bundles using a Hermitean inner products instead of
an Fuclidean inner product. In this case one speaks of
Hermitean vector bundles. Note that a Hermitean in-
ner product is not symmetric. Instead we have (u,v) =
(v, u) and therefore (u,v) = (v, u) where Z denotes com-
plex conjugation of z € C.

A differentiable manifold whose tangent bundle 7'M
is equipped with a fiber metric is called Riemannian
manifold. Generally, a metric on a bundle E induces a
metric on the dual bundle £E*. Metrics on two bundles
FEq, FE5 induce a metric in the product bundle F; ® Fs.

A connection V on a vector bundle F is a differential
operator V : I'(E) — I'(E ® T*M) that satisfies the
Leibniz rule

V(fs)=s®df + fVs

feC=(M),seI'(E).

Here d denotes the exterior derivative or differential
which maps functions (zero-forms) to one-forms. A con-
nection can be considered as an extension of this con-
cept, mapping from the space of E-sections (E-valued
zero-forms) to the space of E-valued one-forms. Those
spaces are equipped with inner products induced by
those on £ and on T M.

A connection is called flat if its associated curvature,
see [17] vanishes. Bundles equipped with a flat connec-
tion are called flat. Note that the exterior derivative on
functions can be considered as a flat connection on the
trivial line bundle over M.

2.2 Connection Laplacians

Given an Euclidean or Hermitean vector bundle E with
a connection V, the adjoint of V is denoted by the map

Fig. 2 Local Cartesian product structure of vector bundles.
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V*: I'"(E®T*M) — I'(E). Using the connection and
its adjoint, the Connection Laplacian associated to V
is defined by

A:=V*'V:I'(E)— I'(E)

The well-known Laplace-Beltrami operator A = d*d
arises as a special case of this general construction. We
will exploit this point of view in order to construct
Laplacian operators on flat complex line bundles and
to study their properties numerically.

2.3 Classification of Line Bundles

Considering the variety of possible line bundles, the
question of classification arises naturally. Let E7, E5 be
two vector bundles over M. A vector bundle isomor-
phism is a homeomorphism ¢ : Fy — E5 that maps the
fiber E1|, to the fiber Es|, via a linear isomorphism.

Up to vector bundle isomorphisms, real line bun-
dles over a manifold are classified by elements of the
first cohomology group H'(M,Zs), while complex line
bundles are classified by elements of the second coho-
mology group H?(M,Z).

Note that for the circle M = S this implies that
there are exactly two real line bundles up to isomor-
phism, the non-trivial one being given by the Mdbius
band example. However, any complex line bundle over
the circle is trivial, since the second cohomology group
of the circle vanishes.

For a closed orientable surface M of genus g the
first cohomology group has rank 2g so there are 229
different real line bundles up to isomorphism. Embed-
ding these bundles in the complex setting, they become
topologically equivalent as they all correspond to the
zero cohomology class in H2(M,Z). However, there is
a whole continuum of topologically equivalent bundles
containing those 229 bundles, each giving rise to its own
bundle Laplacian.

For surfaces with boundary H? vanishes, but for
closed surfaces there is a countable number of topolog-
ically distinct complex line bundles, since H?(M,Z) =
Z. In this work we focus on the zero class.

3 Description of our Approach

In the following, we assume M to be a two-dimensional
surface. Later on we will briefly indicate that it is pos-
sible to extend the construction to higher dimensions.
Let ¢1,...,c, be a set of loops which generate the first
fundamental group 71 (M) of M. Cutting the surface
along the loops ¢; yields a tile of the universal cover

M. Note that the surface can be recovered by a cor-
responding inverse gluing operation, i.e by identifying
two points p, ¢ in the universal cover if they differ by
the action of an element of 71 (M) in the sense of fig. 12.

Let E4y = M x C be the trivial complex line bundle
over M. It can be constructed from the trivial complex
line bundle M x C over M by identifying (p,v) with
(q,w) if p and ¢ differ by the action of an element of
m (M) and if v = w.

Given a set of phase angles (1,...,0,, one §; for
each generator cj, we construct a second complex line
bundle E5 over M by identifying two points (p,v) and
(q,w) in M x C if the points differ by the action of an
element ¢, -+ - ¢k, of m (M) and if v and w differ by a
complex phase of G, + -+ + B, .

The natural connecfivon V =d on E; lifts to a con-
nection on the bundle M x C and induces a connection
on Fs, which we will also denote by V. Our goal is to
compute the spectral decomposition of the connection
Laplacian V*V acting on sections of Fs.

Both F; and E5 are topologically equivalent. If all
phase angles (§; are integer multiples of 7, the under-
lying real bundles obtained by the above construction
using R instead of C are in general non-trivial. The
main point is, that for non-zero phase angles the twist-
ing introduced by the phase shifts gives rise to different
Laplacians and different spectral information.

The construction above implies that we have an as-
signment of phase shifts to the loops c;. By interpreting
these loops as elements of the homology group H; (M),
this assignment yields cohomology elements in H!(M).
In order to localize the transitions described by those
cohomology elements, we employ their duals 7, with
respect to Poincaré or Lefschetz duality. Roughly spo-
ken, instead of accumulating a phase shift of §; as we go
around a loop cg, we induce a sudden transition across
the cycle v, € Hi(M,0M).

In order to obtain the spectral information, our al-
gorithm proceeds in four steps:

1. Determine a basis 71, .. ., v, of the first relative ho-
mology group Hy(M,0M).

2. Discretize the eigenvalue problem d*df = Af using
finite element basis functions that have phase dis-
continuities (3 across the generators v; determined
in the first step.

3. Solve the resulting complex generalized Hermitean
eigenvalue problem with a numerical sparse solver.

4. Visualize the resulting spectra and eigenfunctions.
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3.1 Computing Homology Generators

We assume that our manifold is furnished with a trian-
gulation (V, E, F) where V is the set of vertices, E C V?
is the set of edges and F' C V3 is the set of faces. The set
of vertices together with the edges form a graph (V| E).
The dual of this graph is obtained as the graph (F, E*)
where E* C F? is given by all pairs of faces sharing
an edge in E. In the following, we identify £ and E*
with each other. The problem of computing cycles on
surfaces has been researched before, see e.g. [36,8,3,4]
and the references therein. For our purposes we apply
the algorithm of Erickson and Whittlesey [8]:

1. Compute a spanning tree T' C E of the graph (V, E).

2. Compute a spanning tree T* C E* of the dual graph
(F, E*) using only edges not occurring in 7.

3. Compute the set L of all edges not occurring in T’
or T*. Each edge e € L induces a cycle in T

This algorithm yields a set of 2¢ cycles for a closed
manifold of genus g. For manifolds with k& boundary
loops, the algorithm is modified by treating each bound-
ary loop as an additional face and augmenting the re-
sulting cycles with k — 1 independent paths connecting
distinct boundary loops.

3.2 Finite Element Formulation

The general outline for applying a finite element dis-
cretization to the Laplacian eigenvalue problem d*df =
Af is obtained in two steps: First, taking the inner prod-
uct with an arbitrary test function ¢ we obtain the
equation:

(d*df, ) = (df,dp) = M(f,») V.

This weak variational formulation is discretized by writ-
ing the unknown function f as a linear combination
f=floi+--- fNpn of a collection (¢y) of suitable ba-
sis functions and solving the discrete generalized eigen-
value problem

Af = \Bf ,

where A and B are N x N matrices and f = (f¥) is a
vector of dimension N. The entries of the matrices are
computed by evaluating the inner products

M M

Notice that a complex conjugation of the second factor
is present in the evaluation of these integrals in order to
accommodate for the potentially complex valued basis
functions ;.

(a) Sign flipping an edge basis function.
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(c) Double sign flipping a vertex basis function.

Fig. 3 Modified quadratic finite element basis functions in
the real-valued case of phase shifts corresponding to sign flips.

According to standard finite element constructions,
see e.g. [31], the basis functions are constructed by
piecing together polynomials over the individual trian-
gles in a triangulation of M to yield functions with
local support that satisfy the interpolation conditions
©i(gj) = 6;; on a set of N nodes (gi) spaced regularly
at the vertices, on the edges and in the interior of the
triangles. This establishes a one-to-one correspondence
between every node ¢ and the basis function ¢y eval-
uating to one precisely at that node and to zero at
all other nodes. Depending on where ¢, is located, the
corresponding basis function is called a vertex, edge or
bubble function, respectively.

For the classical Laplace-Beltrami eigenvalue prob-
lem, the basis functions are real-valued and continu-
ous. In our method we modify the basis functions to
be complex-valued and to have a phase discontinuity
across the set of homology generators computed in the
previous section. Of course, these discontinuities re-
flect the twisting of the bundle. More precisely, any
basis function whose support is crossed by one or more
generators is affected. We will denote the generators
as v1,...,7n and the corresponding phase angles by
B1, ..., 0, Depending on the type of basis function we
have three cases to consider:
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Fig. 4 Accumulation of phase shifts in the presence of mul-
tiple generators.

Bubble functions are not affected since their support
is constrained to one triangle and they vanish on the
edges of the triangle.

An edge basis function has a support consisting of
two triangles. Assuming that some generator 7, passes
through the common edge and denoting by T the tri-
angle on the right-hand side of v, we multiply the val-
ues of the standard basis function over Tk with the
factor e .

A vertex basis function has a support consisting of
all triangles incident to a vertex v. Assuming that a
single generator 7 passes through v, it divides the tri-
angle fan into two sets Ty, and Tk corresponding to the
triangles to the left and to the right of 5. We apply
a phase shift by multiplying the values of the standard
basis function over T with the factor e??+. If more than
one generator passes through v, the modifications are
accumulated by multiplication as shown in fig. 4.

In case of a phase of By = 7 corresponding to a a
sign flip, fig. 3 illustrates the modified quadratic edge
and basis functions, showing only the real component as
the imaginary component is zero. For phases Gy which
are not integer multiples of 7, the modified basis func-
tion become complex-valued with a non-zero imaginary
component. In this case the matrix entries A;; and B;;
have to be evaluated using the Hermitean inner prod-
ucts which amounts to using complex arithmetic and
taking care of the conjugation of the second factor.

Note that our computations work with linear finite
elements requiring only vertex basis functions as well
as with higher order elements that require edge and
bubble functions. The latter can be employed if high
accuracy is desired.

3.3 Solving The Discrete Eigenvalue Problem

The resulting matrices A and B define a generalized
Hermitean eigenvalue problem, in which A and B are
Hermitean and B is positive definite. There are two
possibilities to deal with the complex case: Either use a
solver with complex arithmetic or reduce the problem to

a real-valued symmetric eigenvalue problem with dou-
ble dimension. The reduction is performed by assigning
to a complex valued n x n matrix A a real valued 2n x 2n
matrix g, replacing each entry z of A by a 2x2 block in
Az=z+ T (i - ) Note that if A is Hermitean
(AT = A) then A is symmetric (A7 = A). In our im-
plementation we used the SLEPc library [12] with real
arithmetic for solving the matrix eigenvalue problems.

4 Computations and Discussion

After having laid out the theoretical basics for the con-
struction of a continuous family of flat complex bundle
Laplacians, we continue with a discussion of several of
their notable features in comparison to the Laplace-
Beltrami operator. Therefore we employ the proposed
finite element based discretization method in order to
obtain numerical spectral decompositions for various
geometric example shapes.

After focusing on the invariance properties of the
construction, we describe how our approach provides
a differentiable family of Laplacians containing the or-
dinary Laplace-Beltrami operator and compare the re-
sulting spectra. Using an example we demonstrate how
the eigenvalues of different bundle Laplacians adapt to
geometric deformations in a predictable manner, show-
ing that our method provides additional flexibility to
supplement the data obtained from the Laplace-Bel-
trami operator. Afterwards, we focus on the resulting
eigenfunctions and especially their characteristic zero
sets. Finally we indicate that our construction can be
generalized to a three-dimensional setting by giving first
computational examples.

The spectral computations in our experiments are
based on the following input data:

— A triangle mesh describing our manifold with or
without boundary. We assume our mesh to be topo-
logically correct.

— A set of paths 71, . .., 7, generating the first relative
homology group. The paths can be obtained by the
method in section 3.1.

— A set of phase angles (3, one for each generator .

To visualize the resulting eigenfunctions we map
the complex phase information to a cyclic color palette
while an impression of the complex modulus is conveyed
by tracing iso-lines. Note that for any eigenfunction f,
the product cf for a constant ¢ € C is also an eigenfunc-
tion. By convention, the eigenfunctions are normalized
to be orthonormal with respect to the Hermitean inner
product which restricts ¢ to have absolute value one.
However, there remains an inherent phase ambiguity,
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Fig. 5 Eigenfunction resulting from a phase shift of 7 across
all generators. The color palette indicates the complex phase
while the contour lines show the complex amplitude which
is a smooth function even across the generators. Changing
the homology generator representatives only affects the phase
information.

which can be irritating especially when comparing re-
sults in a series of computations. To resolve this ambi-
guity, we fix a common reference vertex and rotate all
resulting eigenfunctions to become real-valued at that
vertex.

4.1 Invariance

As an example shape with non-trivial topology we con-
sider first a model of genus one with two boundary loops
as shown in fig. 5. A set of paths generating the first
relative homology group Hy(M,0M) is given by the
green handle loop v, the red tunnel loop > and the
blue path 3 connecting the two boundaries. For the
spectral decomposition we applied Neumann boundary
conditions on the two boundaries and phase shifts of
Br = 5, k = 1,2,3 across all three paths. The plot
shows the second eigenfunction.

We want to place emphasis on the fact that the re-
sults do not essentially depend on the specific choice of
generators: Replacing a generator v, by a homologous
generator v}, does not change the eigenvalue spectrum
and also does not affect the absolute value (and there-
fore the corresponding contour lines) of the resulting
eigenfunctions as shown in the bottom part of fig. 5.
This is explained by the construction involving transi-
tions of the form e*? which leave the modulus invariant.

4.2 Spectrum

If all phase angles are chosen as zero modulo 27, we
obtain the spectrum of the classical Laplace Beltrami
operator. For a closed object, the spectrum starts with
the eigenvalue zero, which corresponds to the constant
function. However, introducing a non-zero phase shift
makes the zero eigenvalue disappear since it is impossi-
ble for a locally constant function to satisfy the required
phase jump.

To illustrate this behavior, consider the closed ob-
ject of genus two shown in fig. 6. The red handle loop
is one of the four generators that span the first ho-
mology group. We gradually increase the phase angle
[ across this loop from zero to m and plot the result-
ing first eigenfunctions while the evolution of the first
few eigenvalues is shown in fig. 7. The constant eigen-
function gradually changes until it becomes real again
for 8 = w. The corresponding eigenvalue zero rises to a
positive eigenvalue.

50

10k 1

w
(==}
T
/
L

eigenvalue \

/

10f 1

0O 2 4 6 8 10 12 14 16

phase in multiples of 7/16

Fig. 7 Effect of continuously varying a phase between zero
and 7 on the first eigenvalues for the double torus in fig. 6.
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Fig. 6 Effect of continuously varying a phase between zero and 7 on the first eigenfunction. Each snapshot corresponds to a
phase shift of %“ for k=1,...,8 across the handle loop shown in red.

4.3 Modified Shape-DNA and HKS

As an application of the modified Laplacians for shape
retrieval we suggest the extension of spectral-based con-
cepts such as Shape-DNA [26,27], in which a prefix of
the spectrum is used as a feature vector characterizing
the shape. By varying our phase shift parameters [
we are able to obtain different spectra that are more or
less sensitive in response to specific shape deformations
as indicated below.

As an example we created a smooth deformation of
the genus one kitten model by thickening its tail over
30 time frames as shown in the top of fig. 8. The dimen-
sion of the homology group is two, spanned by a handle
and a tunnel loop. Inducing a phase shift § across the
handle loop creates a one-parameter family of bundles
Eg(B) and analogously we obtain a family Er(3) for
phase shifts across the tunnel loop. We performed spec-
tral decompositions of the corresponding Laplacians for
each of the thirty kitten models and a sample of phases
given by 3 = k{g with k =0,...,16.

Figure 8 plots the distance between the resulting
spectra and the classical Laplace-Beltrami spectrum
obtained for the initial object. We have used the low-
est 20 eigenvalues and the L? distance to perform the
comparison of the spectra. Note that the deformation
has almost no influence on the spectra obtained from
Ey(B), whereas it is clearly visible in E7(3). Moreover,
as [ increases from zero to m, the effect is amplified.
Therefore the spectra of the tunnel loop Laplacians are
more sensitive to the deformation.

This example indicates how geometric deformations
are reflected differently in spectra of the modified bun-
dle Laplacians. Obviously, the modifications also have
impact on all shape descriptors that are derived from
spectral information. Choosing different phase shift pa-
rameters offers versatile data containing the informa-
tion obtained by the spectral decomposition of the La-

Frame 1 Frame 10 Frame 20 Frame 30
handle loop tunnel loop
6 : ‘ : 25 : : ‘
— Ly

12
67

20 1
8
67T

10 |

0 5 10 15 20 25 30 0 5 0 15 20 25 30
frame frame

Fig. 8 Effect of a shape deformation on the spectra as mea-
sured by the L2-distance from the Laplace-Beltrami spectrum
of the undeformed object.

place-Beltrami operator and therefore our approach al-
lows to extend previous approaches which depend on
spectral data, such as Shape-DNA [27] or the Heat Ker-
nel Signature [20].

4.4 Zero Sets of Complex Eigenfunctions

We now shift our focus to the zero sets of the eigenfunc-
tions. In contrast to the zero set of a regular real-valued
function which is one-dimensional, the zero sets of our
complex-valued eigenfunctions are in general zero-di-
mensional, consisting of isolated points. We remark,
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Fig. 9 Isolated zeros of a complex eigenfunction.

that the invariance of the contour lines with respect to
the choice of homology generator representatives im-
plies that the location of the isolated zeroes of any
eigenfunction are characteristic for the intrinsic geom-
etry of M and the concrete choice of phase shifts.

To each isolated zero p of f, the complex phase
can be used to define the index of f at p, denoted
by ind(f,p). This integer value intuitively captures the
signed number of times that the phase rotates around
that point. The index of a vector field v € I'(T'M) at a
point p with v(p) = 0 is essentially the same concept.

According to a theorem of Chern, see e.g.[9], the
sum of the indices of any section f of a complex line
bundle E with a connection V is a constant that can
be computed by integrating the curvature of V and
which turns out to depend only on the topology of the
bundle. Since we are dealing with flat line bundles this
integral is zero. In fig. 9 we plotted an eigenfunction of
the Laplacian corresponding to a phase shift of 7 across
the red loop around the tail of a kitten model. The two
views show that there are four isolated zeros, two with
index +1 and two with index —1. Their sum is zero, in
accordance with the theory.

4.5 Zero Sets of Real Eigenfunctions

Returning to the real-valued case, notice that the one-
dimensional zero set of the first eigenfunction corre-
sponding to the phase 8 = w in fig. 6 is a smooth
curve that aligns well with a symmetry of the object
and which lies in the same homology class as the han-
dle loop that was used to induce the phase shift.

We performed several experiments with the zero sets
of the first eigenfunctions and obtained results simi-
lar to [4] who compute cycles aligned with the princi-
pal curvature direction fields on the surface or [3] who
compute short cycles that wrap around the handles and

Fig. 10 Homology generators calculated from the zero sets
of the first eigenfunctions.

tunnels of the surface. In our approach, we compute the
zero sets of all 2™ first eigenfunctions corresponding to
the phase shifts 1,...,0, € {0,7} and sort these by
total length. Then we pick out a set of n cycles that
are linearly independent. Figure 10 shows the output
of this method for objects of genus one to four. Note
that these computations can also be obtained by using
only real arithmetic, see [34].

The obtained zero sets form cycles that are char-
acteristic for their respective homology classes and de-
pend on the intrinsic properties of the surface. There-
fore they can be used in the context of isometry invari-
ant shape analysis for objects with non-trivial topology.
An example application emphasizing the use of charac-
teristic cycles in medical shape analysis can be found
in [41].

4.6 Extension to Three Dimensional Solids

Up to now we focused our discussion on two-dimensio-
nal surfaces. The underlying theoretical framework dis-
cussed here allows the manifold in question to have any
dimension, while the rank of the bundle remains one. In
three dimensions we are dealing with volumetric objects
and the sections of the considered complex line bun-
dles can be modeled as functions that have phase dis-
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continuities across some of the two-dimensional homol-
ogy generators in Ho(M,0M). Elements of this group
can be pictured as equivalence classes of surfaces whose
boundaries are contained in the boundary of M. The
correspondence established above remains valid, i.e. the
generator surface is homologous to any zero surface of
a non-degenerate section of the constructed bundle. Es-
pecially it is homologous to the zero surface of the first
eigenfunction, yielding smooth characteristic homology
generator representatives.

Two computational examples are shown in fig. 11. In
fig. 11(a) we generated a tetrahedral mesh for the two-
dimensional double torus to yield a solid double torus.
Its second relative cohomology group is two-dimensional
and a generator has been computed using algebraic
techniques. Inducing a phase shift of 7 yields the zero
set of the first eigenfunction shown in red.

In fig. 11(b) a solid deformed torus has been carved
out of a solid box. The second relative homology group
is one-dimensional in this case. The representative ob-
tained from the first eigenfunction is the red membrane
clamped on the boundary of the torus.

We note that this three-dimensional extension of our
approach could be useful in computing well-behaving
surfaces generating the second relative homology group.
These surfaces may serve as cuts for magnetic scalar
potentials as considered for example in the works of
Kotiuga [15,10].

5 Conclusion and Outlook

In this paper we studied the numerical eigenvalue prob-
lem for flat complex line bundle Laplacians over a sur-
face M. In this framework, the well-known Laplace-
Beltrami operator A = d*d acting on real-valued func-
tions is identified with the bundle Laplacian acting on
sections of the trivial real line bundle M x R. The un-
derlying connection is the differential d that maps func-
tions to differential one-forms.

This point of view leads naturally to a generalization
in which we can study the problem of spectral compu-
tations for other connection Laplacians in the context
of non-trivial real line bundles as well as complex line
bundles.

The essence of the presented algorithm consists in
discretizing the continuous eigenvalue problem using fi-
nite element basis functions that are modified by apply-
ing phase shifts across a set of paths that span the first
relative homology group of the surface. Our method
therefore is limited to surfaces with non-trivial topol-
ogy as measured by the presence of handles or multiple
boundaries. A surface is represented by a piecewise lin-

e -

(a) Solid double torus.

(b) Complement of a solid torus within a
solid cube.

Fig. 11 Three-dimensional example

ear or smooth triangulation that carries the construc-
tion of the finite element basis functions. The homol-
ogy generators we choose are paths along the edges
of the triangulation. Following the standard Galerkin
discretization leads to a sparse generalized Hermitean
eigenvalue problem that can be solved using available
software packages.

An important special case of our approach arises if
the phase shifts are chosen as integer multiples of m,
corresponding to sign flips across the generators. This
yields the same results as previously introduced in [34]
which features real-valued eigenfunctions that can be
interpreted as sections of generally non-trivial real line
bundles. However, by continuously varying the phase
from zero to m, we can create a smooth transition from
the classical Laplace-Beltrami operator on the trivial
real line bundle to the aforementioned Laplacian oper-
ators acting on sections of non-trivial real line bundles.

While in this work we have focused on computa-
tional aspects, exploring the full range of geometry pro-
cessing applications remains a topic for further research.
It should be emphasized in this context, that the spec-
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tra of the considered Laplacians and certain features
that can be derived from their eigenfunctions, such as
the zero sets, depend on the intrinsic geometry and are
invariant with respect to the choice of homology gener-
ator representatives. The precise location of the homol-
ogy generators on the surface is immaterial as predicted
by the theory and confirmed by the numerical results.
First examples indicating the applicability of our ap-
proach include the computation of intrinsic character-
istic cycles and the extension of classical shape descrip-
tors such as Shape-DNA and the heat kernel signature,
considering the phase shifts as a newly available tool
giving these applications more flexibility according to
topological considerations.

Another topic for further research is the extension
of the presented concepts to non-flat and non-trivial
complex line bundles, noting that the tangent bundle
and cotangent bundle provide natural examples.

Based on the first examples we expect our method
to adapt also to topologically more challenging three-
dimensional situations.
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Appendix A: Algebraic Topology

Let M be a path-connected topological space. A con-
tinuous map v : [0,1] — M with v(0) = (1) = p is
called a loop with base point p. Two loops are called
homotopic if one can be gradually deformed into the
other. The set of equivalence classes of loops with a
fixed base point is called the first fundamental group of
M, denoted by 71 (M, p).

A covering of M is a space M with a surjective
local homeomorphism p : M — M. If M is simply
connected, then p is called a universal covering of M.
A deck transformation is a homeomorphism h : M —
M such that p o h = p. Using these notions, another
geometric interpretation of the first fundamental group
is given by the fact that it is isomorphic to the deck
transformation group of the universal cover of M.

To visualize this construction, consider a topological
torus M = S* x St as shown in fig. 12. Its fundamental
group is generated by two loops, denoted by a and b.
Cutting the torus along these loops creates a rectangle,
a so-called fundamental domain. The universal covering
is the Euclidean plane M = R2, which is tiled with

11
M M
@ | obG | eabq
; ol oG | eag
b
a

Fig. 12 Fundamental group of the torus acting on its univer-
sal covering space by deck transformations.

copies of the fundamental domain. The fundamental
group acts on the points ¢ € M by translation, sending
q to the corresponding point in another copy of the
fundamental domain.

Now, assume M is a manifold represented by a sin-
gular simplicial complex and let R be an arbitrary ring.
A k-chain is a formal linear combination of oriented
k-simplices with coefficients in the ring R. The set of
k-chains form a group C} under addition. The bound-
ary operator 0y : C — Cj_1 is a linear operator that
maps any oriented simplex to the chain consisting of
its appropriately signed oriented boundary simplices.
A chain a € Cy, is called closed, or cycle, if da = 0 and
it is called exact if it can be written as o = 0~y for some
v € Cgy1. Any exact chain is closed as a consequence
of the fact that the boundary of a boundary is empty,
i.e. 0% = 0. Therefore, the sequence of chain groups Cy
with the boundary operators in between form a chain
complex.

Now let Zj be the group of closed k-chains and let
By, be the group of exact k-cycles. Two cycles «, 5 €
Z are called homologous, if @« — 3 € Bjy. The k-th
homology groups are the quotient groups Hy (M, R) :=
Zy/ By, induced by this equivalence relation.

The set of homomorphisms from Hy to R form the
k-th cohomology group H*(M, R).

For manifolds M with non-empty boundary OM we
will also need the so called relative homology groups
Hy(M,0M) which are obtained by modifying the ho-
mology equivalence relation to treat any chain on the
boundary as zero. In this relative homology two relative
k-cycles a, 3 are called homologous if &« — 3 = 0y + 4
for a (k + 1)-chain - and some k-chain 0 contained in
the boundary M.

The well-known Lefschetz duality theorem guaran-
tees the existence of an isomorphism between the coho-
mology group H*(M) and the relative homology group
Hp,_(M,0M) where m denotes the dimension of the
manifold.



12

Alexander Vais et al.

For the annulus on the
right the cycle a is a gen-
erator of Hy(M). Tt is also
a generator of the first fun-
damental group 1 (M). The
blue path 3 is not a cycle,
since its boundary consists
of two points. However it is
a relative cycle since these
points lie on the boundary
OM. In fact 3 is a generator
of Hy(M,0M).
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